Lect25-0419 Pi-1

Tuesday, April 19, 2016 10:14 AM

Given spaces
$$X, Y$$

 $G(X,Y) = \{all \ continuous \ wappings\}$
For $f, g \in G(X,Y)$, $f \simeq g$ if
 $\exists \ continuous \ H: X \times [o,1] \longrightarrow Y$
 $f(x) = H(x,0) \} \forall x \in X$
 $g(x) = H(x,1)$
 $[X,Y] = G(X,Y)/\simeq$

Examples

①
$$Y = \mathbb{R}^n, n \ge 1$$
; or star-shaped
 $X = \text{any space}$
 $C: X \longrightarrow Y$, $C(X) = 0 \in \mathbb{R}^n$ constant
 $[X, \mathbb{R}^n] = \text{singleton} = \{[C]\}$
 $Every f: X \longrightarrow \mathbb{R}$, $f \simeq C$

Theorem you need!

then \forall space \times , $[\times, T_1]$, $[\times, T_2]$ are bijective

$$X = X_1 = X_2$$
 (homeomorphic)

then \forall space Y, $[X_1,Y]$, $[X_2,Y]$ are bijective

Idea of proof

Let
$$\gamma: T_1 \longrightarrow T_2$$
 be a homeomorphism

Qu. What do we need to check?

(ii) 1-1 } Hopse:
$$(\varphi_{\#})' = (\varphi^{-1})_{\#}$$

More precisely

(1)
$$[f] = [g] \Rightarrow [\varphi \cdot f] = [\varphi \cdot g]$$

 $f \simeq g$ $\varphi \cdot f \simeq \varphi \cdot g$
 $f_{\star} \qquad \varphi \cdot h_{\star}$

$$((i))$$
 $((4)^{-1}) = ((4))_{\#}$ $[f] \xrightarrow{(4)} [(4)]_{\#} [(4)^{-1}]_{\#}$

More general, [f]
$$\frac{q_{+}}{}$$
 [$\varphi \circ f$] $\frac{1}{}$ [$\varphi \circ \varphi \circ f$] $[\varphi \circ \varphi \circ \varphi]$ $[\varphi \circ \varphi \circ \varphi]$

The crucial argument used in (i), (ii), (iii) is the result below.

Ultimate Theorem Let X,Y, Z be spaces and

then $g_{i}f_{i} \stackrel{H}{\simeq} g_{i}f_{i} \simeq g_{i}f_{o} \simeq g_{o}f_{i}: X \longrightarrow Z$ Proof

Construct $H: X \times [0,1] \longrightarrow Z$ by H(x,t) = G(F(x,t),t)

The other homotopies are similar

Mapping of a pair

Let ACX, BCY. Denote $f:(X,A) \rightarrow (Y,B)$

meaning f:X->Y and f(A) CB

Loop. Let X be a space with xoEX

A loop in X based at x_0 is a continuous $Y:([a,b], [a,b]) \longrightarrow (X, x_0)$

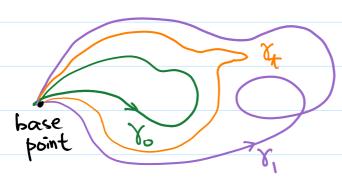
i.e.
$$\gamma(a) = \gamma(b) = \gamma_0$$

A porth begins and ends at xo

Alternatively, may study

 $\gamma: (S', 1) \longrightarrow (X, x_0)$

Given two loops To, T,: [0,1] -> X at xo, they are loop homotopic if there exists a loop homotopy L: [0,1] x [0,1] -> X such that loop parameter homotopy time $L(S,0) = \gamma_0(S)$ $L(S,1) = \gamma_1(S)$ $S \in [0,1]$ homotopy $L(o,t) = L(1,t) = x_0 \quad \forall \quad t \in [0,1]$ loop based at X.



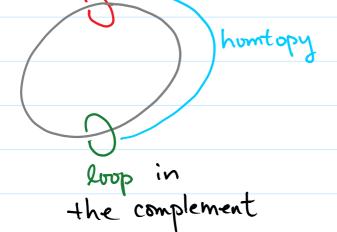
For $f,g:(X,A) \rightarrow (Y,B)$ with $f|_{A} \equiv g|_{A}$ A homotopy rel A is a continuous mapping H: Xx [0,1] -> Y H(x,0) = f(x), H(x,1) = g(x), $x \in X$ H(x,t)=f(x)=g(x), $x \in A$, $t \in [0,1]$

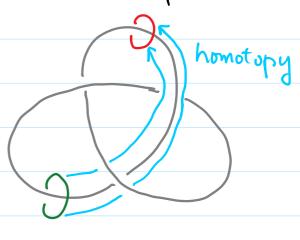
Example of importance of base point In topology, we often need to study complement of a knot

R3 \ circle

or

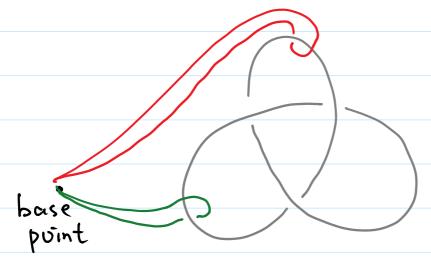
R3 \ Trefoil





If the loops have no base point, both

R3 \ circle, R3 \ Trefoil has this homotopy class

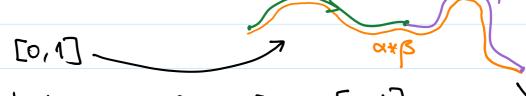


These two loops with base point one not homotopic. Therefore

R3/circle + R3/Trefoil

Concatenation Let
$$\alpha$$
, β : $[0,1] \rightarrow X$ be paths such that $\alpha(1) = \beta(0)$, define a path

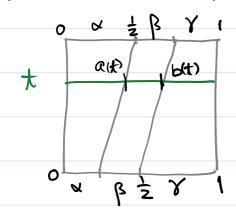
$$\alpha * \beta : [0,1] \longrightarrow \times$$
 by $\alpha * \beta (S) = \begin{cases} 7 \times (2S) & \text{if } S \in [0,\frac{1}{2}] \\ \beta(2S-1) & \text{if } S \in [\frac{1}{2},1] \end{cases}$



Note that as mappings from
$$[0,1] \longrightarrow X$$

 $x * (\beta * Y) \neq (x * \beta) * Y$
parameters $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Proposition
$$(\alpha + \beta) + \chi \sim \alpha + (\beta + \chi)$$
 rel $\{0,1\}$



The homotopy needed

$$\alpha(t)$$
 but)

 $A(t) = \begin{cases} \alpha(t) & \beta(t) \\ \beta(t) & \beta(t) \end{cases}$
 $A(t) = \begin{cases} \alpha(t) & \beta(t) \\ \beta(t) & \beta(t) \end{cases}$

So that the whole

By high school math,
$$\alpha, \beta, \gamma$$
 are travelled.

$$\alpha(t) = \frac{1}{4}(1-t) + \frac{1}{2}t = \frac{1}{4}t + \frac{t}{4}, \quad b(t) = \frac{1}{2}t + \frac{t}{4}$$

$$\alpha\left(\frac{s}{\alpha(t)}\right), \quad \beta\left(\frac{s-\alpha(t)}{b(t)-\alpha(t)}\right), \quad \gamma\left(\frac{s-b(t)}{1-b(t)}\right)$$

Group structure

Wednesday, April 20, 2016

5:19 PM

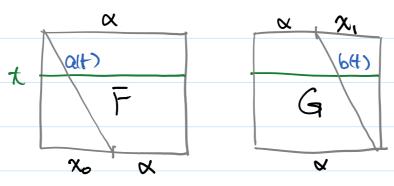
knowing that associativity is true up to homotopy we need to check well-define up to homotopy! Proposition $\alpha_0 \simeq \alpha_1$ and $\beta_0 \simeq \beta_1$, perhaps rel 30,13. Then $\alpha_0 * \beta_0 \simeq \alpha_1 * \beta_1$, perhaps rel 30,13.

Result. $[\alpha] \cdot [\beta] = [\alpha * \beta]$ is well-defined and $([\alpha] \cdot [\beta]) \cdot [\gamma] = [\alpha] \cdot ([\beta] \cdot [\gamma])$

Existence of Identity

Let $\alpha : [0,1] \longrightarrow X$, $\alpha(0) = x_0$, $\alpha(1) = x_1$ $c_0 : [0,1] \longrightarrow [x_0]$, $c_1 : [0,1] \longrightarrow [x_1]$

Then Co+ x x x x x x+C, rel {0,1}



$$\overline{F}(s,t) = \begin{cases} x_0 & s \in [0,a(t)] \\ x(\frac{s-a(t)}{1-a(t)}) & s \in [a(t),1] \end{cases} a(t) = \frac{1-t}{2}$$

$$G(s,t) = \begin{cases} \sigma(\frac{s}{b(t)}) & s \in [0,b(t)] \\ \chi_1 & s \in [b(t),1] \end{cases}$$

$$b(t) = 1 - \frac{t}{2}$$

Existence of "Inverse"

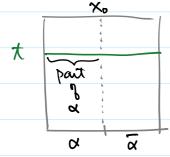
Let
$$\alpha: [0,1] \longrightarrow X$$
, $\alpha(0)=x_0$, $\alpha(1)=x_1$

Define
$$\overline{\alpha}: [0,1] \longrightarrow X$$
 by

$$\bar{\alpha}(s) = \alpha(1-s)$$
 travelling backward

Then
$$\overline{d}(0) = X_1$$
, $\overline{d}(1) = X_0$

Proposition
$$x*a \sim c_0$$
, $a*a \sim c_1$ rel $\{0,1\}$



Fundamental Group TI (X, x0)

(i) Set of loop homotopy classes
$$[x]$$
, where $x:([0,1],\{0,1\}) \longrightarrow (X,X_{\delta})$

(iv)
$$1 = [c_0]$$

(v)
$$[w]^{-1} = [\bar{\alpha}]$$

Given a space X and a base point $x \in X$ TI (X, No) = Fundamental Group of X at X. [a] loop homotopy class $X: \left(\left[0^{1/3} \right]^{2} \left[0^{1/3} \right] \xrightarrow{} \left(X^{2} \right)^{2} \right)$ under homotopy rel {0,1} Group structure $[\alpha] \cdot [\beta] = [\alpha * \beta]$ $1 = [c] \quad \text{where } c: X \longrightarrow \{x_0\}$ $[\alpha]^{-1} = [\overline{\alpha}] \overline{\alpha}(s) = \alpha(1-s)$ Independent of base point If X is path connected and $x_0, x_i \in X$ then $\pi_i(X, x_0)$ and $\pi_i(X, x_i)$ are isomorphic = loops at X, Loops at Xo. Let $Y:[0,1] \longrightarrow X$ be a path with $\gamma(0) = \chi_1$, $\gamma(1) = \chi_0$, from χ_1 to χ_0 Then Y(S)= Y(I-S) is from Xo to X, Define $\varphi: \overline{\pi}_i(X, x_0) \longrightarrow \overline{\pi}_i(X, x_i)$ by

[x] -> \ 7*x*\[\frac{1}{5}\]

5:22 PM

Need to check

(1) Well-defined: $\alpha_0 \simeq \alpha_1$ rel $\{0,1\}$ $\implies \gamma_{+} \alpha_{0} \times \overline{\gamma} \simeq \gamma_{+} \alpha_{1} \times \overline{\gamma} \quad \text{rel } \{0,1\}$ $proved similarly in <math>[\alpha][\beta] = [\alpha_{+}\beta]$

3 Bijection: Obvious inverse by & from xo to X1

(9[a]). $(\varphi[\beta]) = \varphi([\alpha][\beta])$

The proof is a routine exercise of homotopy.

Simply connected A path connected space X is 1-connected if $\pi_1(X,X_0)$ is trivial

Examples.

(1) X is contractible $\Rightarrow X$ is 1-connected (2) S^2 , in general, S^n , $n \ge 2$ is 1-connected. But they are not contractible